Robust Multilevel Methods for General Symmetric Positive Definite Operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Multilevel Methods for General Symmetric Positive Definite Operators

An abstract robust multilevel method for solving symmetric positive definite systems resulting from discretizing elliptic partial differential equations is developed. The term “robust” refers to the convergence rate of the method being independent of discretization parameters, i.e., the problem size, and problem parameters. Important instances of such problem parameters are in particular (highl...

متن کامل

Robust Multilevel Methods for General Symmetric Positive

An abstract robust multilevel method for solving symmetric positive definite systems resulting from discretizing elliptic partial differential equations is developed. The term “robust” refers to the convergence rate of the method being independent of discretization parameters, i.e., the problem size, and problem parameters. Important instances of such problem parameters are in particular (highl...

متن کامل

Robust Solvers for Symmetric Positive Definite Operators and Weighted Poincaré Inequalities

An abstract setting for robustly preconditioning symmetric positive definite (SPD) operators is presented. The term “robust” refers to the property of the condition numbers of the preconditioned systems being independent of mesh parameters and problem parameters. Important instances of such problem parameters are in particular (highly varying) coefficients. The method belongs to the class of ad...

متن کامل

DDtBe for Band Symmetric Positive Definite Matrices

We present a new parallel factorization for band symmetric positive definite (s.p.d) matrices and show some of its applications. Let A be a band s.p.d matrix of order n and half bandwidth m. We show how to factor A as A =DDt Be using approximately 4nm2 jp parallel operations where p =21: is the number of processors. Having this factorization, we improve the time to solve Ax = b by a factor of m...

متن کامل

Positive Definite and Semi-definite Splitting Methods for Non-hermitian Positive Definite Linear Systems

In this paper, we further generalize the technique for constructing the normal (or positive definite) and skew-Hermitian splitting iteration method for solving large sparse nonHermitian positive definite system of linear equations. By introducing a new splitting, we establish a class of efficient iteration methods, called positive definite and semi-definite splitting (PPS) methods, and prove th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2014

ISSN: 0036-1429,1095-7170

DOI: 10.1137/120865872